Analysis of rapidly synthesized guest-filled porous complexes with synchrotron radiation: practical guidelines for the crystalline sponge method
نویسندگان
چکیده
A detailed set of synthetic and crystallographic guidelines for the crystalline sponge method based upon the analysis of expediently synthesized crystal sponges using third-generation synchrotron radiation are reported. The procedure for the synthesis of the zinc-based metal-organic framework used in initial crystal sponge reports has been modified to yield competent crystals in 3 days instead of 2 weeks. These crystal sponges were tested on some small molecules, with two being unexpectedly difficult cases for analysis with in-house diffractometers in regard to data quality and proper space-group determination. These issues were easily resolved by the use of synchrotron radiation using data-collection times of less than an hour. One of these guests induced a single-crystal-to-single-crystal transformation to create a larger unit cell with over 500 non-H atoms in the asymmetric unit. This led to a non-trivial refinement scenario that afforded the best Flack x absolute stereochemical determination parameter to date for these systems. The structures did not require the use of PLATON/SQUEEZE or other solvent-masking programs, and are the highest-quality crystalline sponge systems reported to date where the results are strongly supported by the data. A set of guidelines for the entire crystallographic process were developed through these studies. In particular, the refinement guidelines include strategies to refine the host framework, locate guests and determine occupancies, discussion of the proper use of geometric and anisotropic displacement parameter restraints and constraints, and whether to perform solvent squeezing/masking. The single-crystal-to-single-crystal transformation process for the crystal sponges is also discussed. The presented general guidelines will be invaluable for researchers interested in using the crystalline sponge method at in-house diffraction or synchrotron facilities, will facilitate the collection and analysis of reliable high-quality data, and will allow construction of chemically and physically sensible models for guest structural determination.
منابع مشابه
The crystalline sponge method updated
Crystalline sponges are porous metal complexes that can absorb and orient common organic molecules in their pores and make them observable by conventional X-ray structure analysis (crystalline sponge method). In this study, all of the steps in the crystalline sponge method, including sponge crystal preparation, pore-solvent exchange, guest soaking, data collection and crystallographic analysis,...
متن کاملAbsolute structure determination of compounds with axial and planar chirality using the crystalline sponge method† †Electronic supplementary information (ESI) available: Details of sample preparation and crystallographic analysis. CCDC 1051799, 1051800, 1051618, 1051619, 1043948 and 1043949. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01681a Click here for additional data file. Click here for additional data file.
Chiral molecules with axial or planar chirality are of special interest to synthetic chemists because of both their unique chirality without stereogenic centers and their practical use as chiral auxiliaries or chiral ligands for catalytic asymmetric syntheses. There are therefore a number of reports on the asymmetric synthesis of these chiral molecules. Unlike common chiral molecules with stere...
متن کاملSingle-crystalline molecular flasks: chemical transformation with bulky reagents in the pores of porous coordination networks.
Introduction In situ observation of solid-state reactions by X-rays provides direct information on reaction processes and final structures. Crystallographic analysis of reactions involving bulky reagents within crystals are also limited due to restricted diffusion in close-packed crystals and the often concurrent crystal degradation. Recently, we reported a robust coordination network complex p...
متن کاملNumerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow
This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...
متن کامل2D Porous ZnO Nanosheets: One Pot Synthesis with Low Turn-on Field
Low turn-on field of 2.3 V/µm was found for the emission current density of 10 µA/cm2 from 2D porous ZnO nanosheets. High current density of 0.76 mA/cm2 was drawn at an applied field of 4.1 V/µm. The observed low turn-on field of porous ZnO nanosheets has been found to be superior to the other ZnO nanostructures reported in the literature. Also, the emission current stability over a period of 3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 71 شماره
صفحات -
تاریخ انتشار 2015